Concept Evaluation of an Inductive Charging System for Electric Vehicles

Authors: <u>Heike Barth</u>, Marco Jung, Martin Braun Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES)

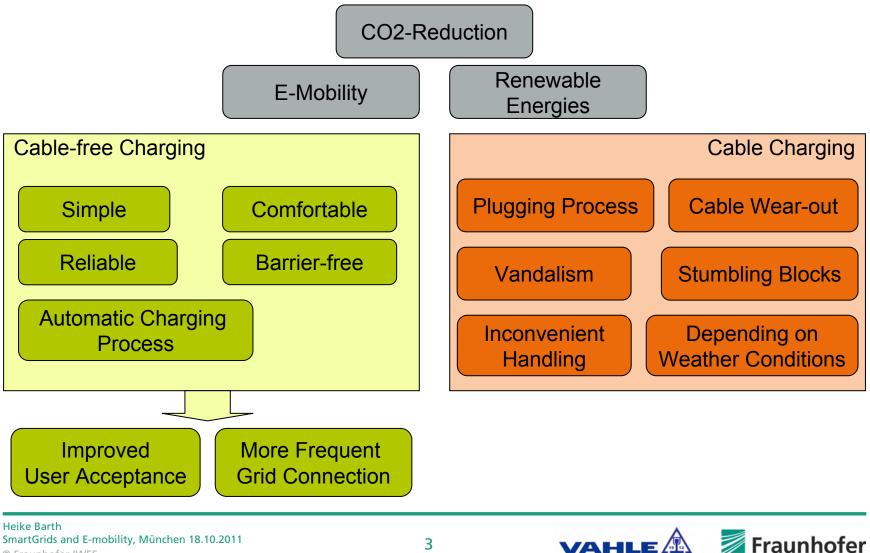
> Benedikt Schmülling, Ulrich Reker Paul Vahle GmbH & Co. KG

3rd European Conference SmartGrids and E-Mobility München, 18.10.2011

Heike Barth SmartGrids and E-mobility, München 18.10.2011 © Fraunhofer IWES

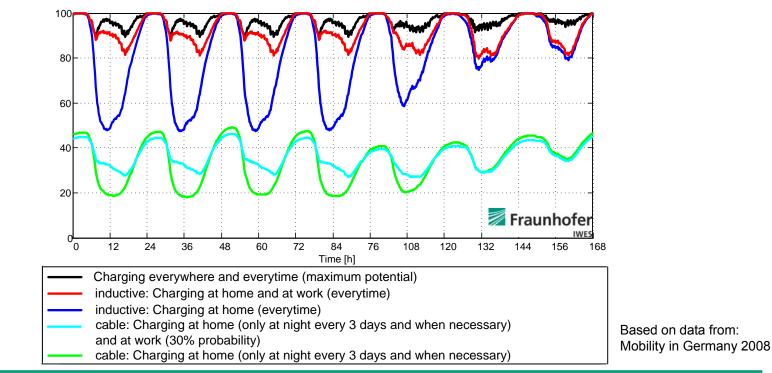
1

Outline


- Motivation for Inductive Charging
- W-Charge Project
- Technological Implementation
- Test System
- Parking Study

IWES

Inductive Charging - Why?



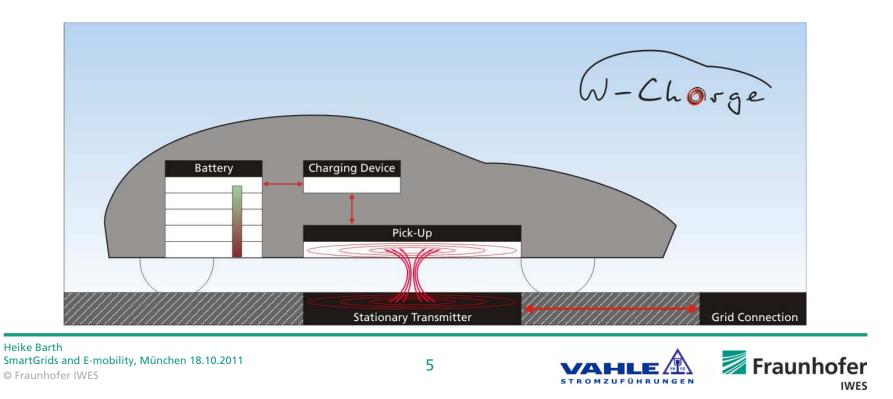
OMZUFÜHRUNGEN

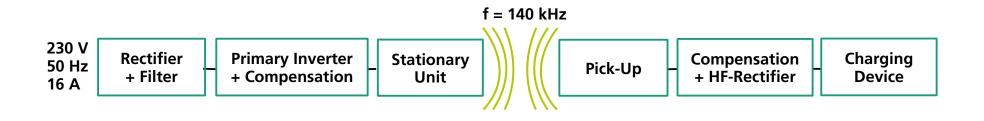
Potentials for Grid Integration

- Electric vehicles can store and balance out fluctuating energy production of renewable energy
 - \rightarrow but only when they are connected to the grid

Share of connected vehicles to the grid under different scenarios [%]

Heike Barth SmartGrids and E-mobility, München 18.10.2011 © Fraunhofer IWES



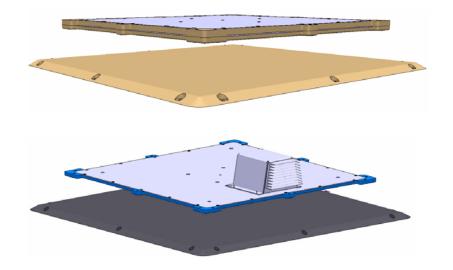

W-Charge Project

- Development of a cable-free energy transmission system for stationary battery charging of electric vehicles
- Integration into test vehicles (BEV and PlugIn-HEV)
- Development of a multifunctional on-board battery charger

Basic Topology (Vahle)

Technical specifications

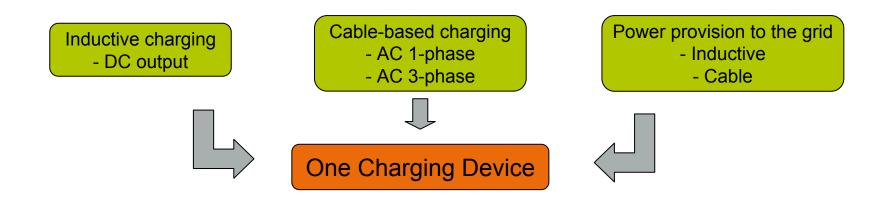
- Single-phase grid connection (230 V, 50 Hz, 16 A, max)
- Rated power: 3 kW
- Rated frequency: 140 kHz
- Transmission distance: 60mm-170mm
- Conform to German application guideline for inductive charging (VDE-AR-E 2122-4-2)


Inductive System

- Stationary transmitter unit
 - area = (1000 x 1000) mm
 - height = 25 mm

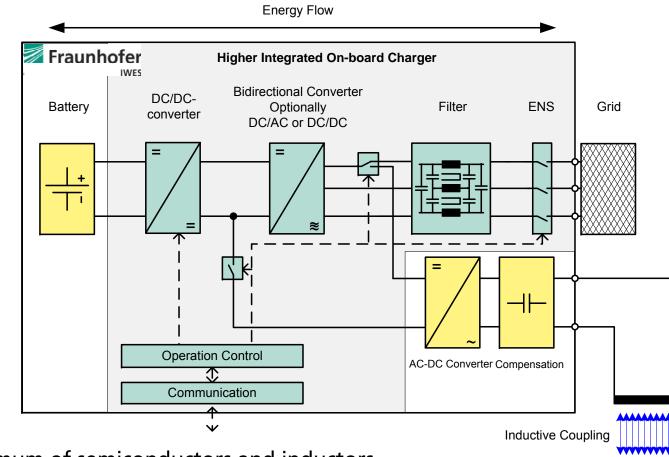
Two versions of the on-board unit ("pick-up")

- "Integrated" version
 - (incl. secondary electronics)
 - area = (800 x 800) mm
 - heigth = 35 mm
- "Flat" version
 - area = (800 x 800) mm
 - height (plate) = 16 mm



7

Higher Integrated On-board Charging Converter


Actual functionality of the laboratory prototype (Fraunhofer IWES):

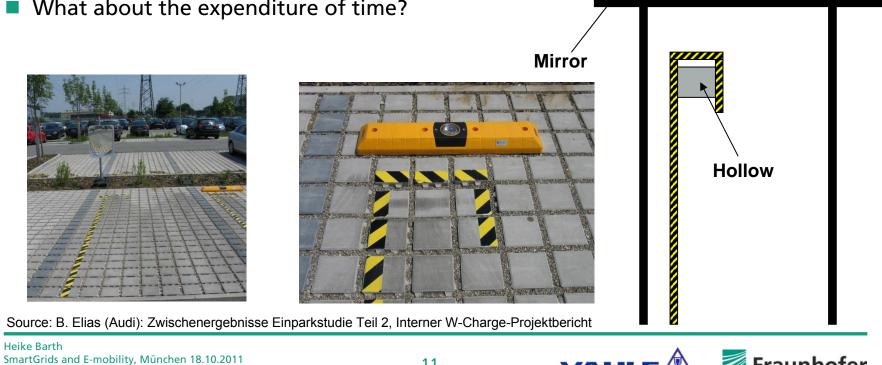
- Cable-based connection
 - 3-phase charging
 - 3-phase power provision to the grid
 - 1-phase charging
- Cable-free charging connection
 - 3 kW charging with wide DC-voltage range

Higher Integrated On-board Charging Converter

- Minimum of semiconductors and inductors
- Communication with battery management system and pick-up

Test System

- Integration and analysis of inductive charging systems
- Mobile test system with mounting for pick-up, space for measuring devices and charging converter
- Pick-up can be moved in three dimensions
- Automated approach to predefined measuring points in x-, y- and z-direction
- For reproducible efficiency and field measurements



Parking Accuracy

- How accurate do I have to park for inductive charging?
 - \rightarrow ±10cm according to German application guidline for inductive charging
- Is this possible without any means?
- How accurate is vehicle positioning possible with simple non-electronic means?
- What about the expenditure of time?

Results of the Study on Parking Accuracy

Preferred parking assistance

Approx. 85% of the test persons prefer the combination of parking assistance means ground marking + hollow + mirror

"cable-free" vs. "cable-based charging"

- In average 55 s are needed to get out the cable, plug in, plug out and stow it
- In average 43 s are needed additionally for cable-based charging compared to cablefree charging

Results for cable-free charging

Parking Assistance (90% are 26 of 28 test persons)	Deviation (90% are better than)		Expenditure of time compared to parking without charging
	(radial)	(angle)	(90% do not need more than additionally)
Ground Marking (GM)	83 cm	4,9 °	14 s
GM + Mirror	15 cm	3,1 °	14 s
GM + Hollow	21 cm	4,5 °	10 s
GM + Hollow + Mirror	8 cm	2,5 °	11 s

Source: B. Elias (Audi): Zwischenergebnisse Einparkstudie Teil 2, Interner W-Charge-Projektbericht

Inductive Charging – Current Status and Outlook

The technology is here and working!

Issues to be treated and solved to become a success:

- Interoperability between systems of different manufacturers
- Vehicle design towards effective integration of the inductive charging system
- Parking guidance
- Fundamental evaluation of the environmental impacts of the electromagnetic fields

Kontakt

Heike Barth Fraunhofer IWES Königstor 59 34119 Kassel Tel.: +49 561-7294 269 E-Mail: heike.barth@iwes.fraunhofer.de

The project W-Charge was supported by:

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Project Partner:

Audi

Electronics Venture GmbH

Heike Barth SmartGrids and E-mobility, München 18.10.2011 © Fraunhofer IWES

www.w-charge.de